The expression and role of tyrosine kinase ETK/BMX in renal cell carcinoma
نویسندگان
چکیده
BACKGROUND Expression of the non-receptor tyrosine kinase ETK/BMX has been reported in several solid tumors, but the underlying molecular mechanisms and its clinical significance in renal cell carcinoma (RCC) remain to be elucidated. METHODS ETK expression in 90 human RCC and 30 human normal renal tissue samples was examined by immunohistochemistry and compared with several clinicopathologic parameters. To further demonstrate the biological function of ETK in RCC, Western blot was used to test the expression level of ETK protein in RCC cell lines. Subsequent to the downregulation of ETK by small interfering RNA, the effects of ETK on RCC cell growth, apoptosis, migration and invasion were assessed by methyl thiazol tetrazolium assay, flow cytometry and transwell assay. And the varying expression of VEGF, STAT3 and phosphorylated STAT3 (p-STAT3) in RCC were evaluated by Western blot. RESULTS Immunohistochemistry analysis showed that ETK expression was highly increased in RCC and was positively correlated with clinical stage, grade and metastasis. Simultaneously, the overall survival time in patients with higher ETK expression was obviously shorter than that in patients with lower ETK expression. ETK was also detected in RCC cell lines. Moreover, the down-regulating ETK significantly inhibited RCC cell growth, migration, invasion and promoted apoptosis. The expression of VEGF and p-STAT3 were also decreased. CONCLUSIONS Our study suggests that the overexpression of ETK is associated with the malignancy and disease progression of RCC. Since ETK is also involved in RCC cell biological function and VEGF-ETK-STAT3 loop, ETK may be used as a potential therapeutic target for RCC.
منابع مشابه
miR-495 promotes the chemoresistance of SCLC through the epithelial-mesenchymal transition via Etk/BMX.
miR-495 serves as an oncogenic miRNA or a tumor suppressor in different types of cancer. However, its role in the drug resistance of small cell lung cancer (SCLC) remains unidentified. In this study, we investigated whether miR-495 regulates the chemoresistance of SCLC through the epithelial-mesenchymal transition (EMT) via Epithelial and endothelial tyrosine kinase (Etk/BMX) using two drug-res...
متن کاملTyrosine Kinase ETK/BMX Is Up-Regulated in Bladder Cancer and Predicts Poor Prognosis in Patients with Cystectomy
Deregulation of the non-receptor tyrosine kinase ETK/BMX has been reported in several solid tumors. In this report, we demonstrated that ETK expression is progressively increased during bladder cancer progression. We found that down-regulation of ETK in bladder cancer cells attenuated STAT3 and AKT activity whereas exogenous overexpression of ETK had opposite effects, suggesting that deregulati...
متن کاملIntraepithelial Neoplasia in Mouse Cancer and Its Overexpression Induces Prostate Tyrosine Kinase Etk/BMX Is Up-regulated in Human Prostate
The nonreceptor tyrosine kinase Etk/BMX was originally identified from the human prostate xenograft CWR22. Here, we report that Etk is up-regulated in human prostate tumor specimens surveyed. Knocking down Etk expression by a specific small interfering RNA (siRNA) in prostate cancer cells attenuates cell proliferation, suggesting an essential role of Etk for prostate cancer cell survival and gr...
متن کاملTyrosine kinase Etk/BMX is up-regulated in human prostate cancer and its overexpression induces prostate intraepithelial neoplasia in mouse.
The nonreceptor tyrosine kinase Etk/BMX was originally identified from the human prostate xenograft CWR22. Here, we report that Etk is up-regulated in human prostate tumor specimens surveyed. Knocking down Etk expression by a specific small interfering RNA (siRNA) in prostate cancer cells attenuates cell proliferation, suggesting an essential role of Etk for prostate cancer cell survival and gr...
متن کاملEtk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells.
Etk/Bmx, a member of the Tec family of nonreceptor protein-tyrosine kinases, is characterized by an N-terminal pleckstrin homology domain and has been shown to be a downstream effector of phosphatidylinositol 3-kinase. P21-activated kinase 1 (Pak1), another well characterized effector of phosphatidylinositol 3-kinase, has been implicated in the progression of breast cancer cells. In this study,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 33 شماره
صفحات -
تاریخ انتشار 2014